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Abstract—In the paper a physico-mathematical model of moulding is proposed that reduces a nonlinear

problem of energy and mass transfer with volume deformation to a linear problem of energy and mass
transfer to a thermodynamic system with a constant volume.

NOMENCLATURE
i mass-transfer potential [J/kg*];
T, absolute temperature;
X, ,z, Cartesian coordinates [m];
s, entropy of unit mass [J/kg°K];
S entropy concentration [J/m3°K];
v, = 1/p, specific volume [m3/kg];

Ps Pm> Ap,,, density, mean density, increment of
mean density, respectively [kg/m®]};

P, P;, pressure, normal and tangential stresses
(i,j = 1,2, 3), respectively;

PP, P,, physichl scalars of normal stresses
along axes x, y, z, respectively;

P, P., pressure over the surface and at the centre
of the disperse plate;

P,,P,, P,, pressure over the surface and at the
centre of disperse plate at the beginning
and end of the time interval, respectively;

P, P,, pressure at the ith period of moulding and
pressure increment at the beginning of
region Art;

P, P2, mean pressure in the beginning and at the
end of time interval (*zone”) [N/m*];

e, concentration of compression energy per
per unit volume [J/m?];
F, energy and mass-receiving surface [m?];

Ce, (Com (C)Em (C.)JE,  energy capacity
coefficient and its mean values, respectively:
mean, mean within pressure range between
0 and P,,; mean within pressure range
between P2 and P¢ [J/m3(N/m?)];

Coms (Com)s"" (Com)a:,  specific energy coefficient
and its mean values, respectively: within
density increment range between O and
Ap,,, and between Ap, and Ap,

J .
m?®(kg/m* ):| '

Im> specific mass flow [kg/m?*s];
Qe+ Geos em»  Specific flux of mechanical energy and
its values, respectively at the initial moment

953

of interval Ar(“0”) and mean value within

this interval (m)
W
E )

N 2
&y rate of changing pressure [ /m ];
s

& rate of changing specific energy flux

)

R, predicted thickness of disperse plate [m];
Fo, Fourier number;
0, entropy production per unit volume

=

thermodynamic motive force of mass

transfer;

a,, a.,, potential conductivity and its mean value
in predicted “zone” [m?/s];

F energy conductivity [W/m* (N/m?)];

M,,M;,,, M,,, working power, intake power and

idling power of power unit, respectively [W].

Xons

INTRODUCTION

RECENT WORKS of Dutch and Belgian physicists,
mainly of de Groot, and of Soviet scientists under
general direction of Academician A. V. Luikov have
allowed a new powerful method to be developed for
phenomenological investigation of transfer processes
called thermodynamics of irreversible processes.

The presented paper is the first attempt to treat
pressure shaping of disperse materials from the
phenomenological point of view.

THE MAIN POINTS OF THE FORMULATED MODEL

A disperse material in a volume restricted by the
required dimensions of a manufactured product and
the press mould walls is assumed as a thermodynamic
system. The disperse material is a continuous system
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with parameters such as density, pressure, temperature
always variable in space when interacting with the
surrounding medium.

The objective of moulding is to increase mass content
of the thermodynamic system by addition of mass
(homogeneous or inhomogeneous) from the surround-
ing medium.

“Excess” mass of the material under plungers, the
plungers themselves with a drive are the surrounding
medium, a kind of “mass-energostat”, for the present
system to exchange mass and energy with. The “mass-
energostat” is assumed to possess a sufficient amount
of mass and energy for the present technological
process to run. During the whole moulding cycle mass
and energy concentrations in it are not a function of
the spatial coordinates.

External mass and energy transfer between the
thermodynamic system surface and the surrounding
medium occurs due to replacement of an elementary
surface layer of the system with a small energy potential
by the mass from the “mass-energostat™ with a higher
margin of the same potential in the direction of the
external force.

Inside the system considered processes of successive
movement of elementary layers of mass towards the
system axis, transfer of momentum, kinetic energy at
collisions of discrete mass particles proceed in a random
diffusive way, involve energy dissipation for internal
friction forces and are damping. This is the way how
diffusive mass and energy fluxes arise. Thus, a complex
process of mass packing with deformation of the
disperse material volume in the press mould is rep-
resented by a simplified physical model of mass and
energy transfer in a thermodynamic system with a
constant volume.

A disperse material is placed within a field of con-
servative earth gravitation forces. It is shown that a
natural process of consolidation (packing the material
due to these body forces) proceeds in relatively thin
plates for years. Therefore, the gravity effect on dis-
tribution of the disperse material density may be
neglected, ie.

po # fI2)

A uniform initial distribution of the material over
two other axes in the plate is also assumed

p.# [1X,Y,Z,0)

A MATHEMATICAL MODEL OF THE PROCESS

A moulding process will now be treated that proceeds
at bilateral symmetrical mass-energy flux supply to a
disperse plate of an infinite length and width (Fig. 1).

Mass and energy transfer into the system is ac-
companied by disturbance of its mass-energy equilib-
rium with the surrounding medium. All changes that
take place in the system during an elementary
irreversible process are included in the second principle
of thermodynamics by the entropy production term
which at initial assumptions of the process model is
of the form

TdS, = pdp. n
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F1G. 1. Geometric interpretation of the physical model of
mass and energy transfer for pressure shaping of an infinite
disperse plate. G, = G, are forces applied to plungers (2)
at symmetric bilateral moulding; 1, thermodynamic system
with prescribed volume V = F.2Bbeing saturated with mass
and energy; F, mass- and energy-receiving surface area of
the system, m2. 2B, disperse plate thickness, m; 2, “mass-
energostat”, a source of mass and energy at moulding
(plungers and excessive mass saturating the thermodynamic
system); x, y, z, Cartesian coordinates.

The Gibbs—Duhem equation
dy =sdT+vdp, Jkg

gives the mass-transfer potential p, where pressure,
density, temperature, concentration and the other
scalar quantities are physical scalars. In this case, for
liquids in equilibrium with the surrounding medium,
pressure P represents compression energy storage per
unit volume, N/m?, N.m/m?, I/m3,ie. P=c.

A stressed state of disperse materials is characterized
by the antisymmetric tensor of the second order

Pll P12 P13
Py Py Py 3
P31 Py, Py

P =

where Py = —P,.n; Pyy = P,on; Py; = P,

The total compression energy storage in the system
under stress is not included by any of the scalar
quantities P, {(i= X, ¥, Z).

Therefore, the specific energy consumed by the mass
per unit volume of this system may be expressed as

e=P,.C, )
de . ., Oe
where C, = Pk for liquids 3P~ 1; e=P

So, at dT ~ 0 in accordance with equation (2} we
have

du=vde 5

hence
u=ve (6)
Tds, = vedp 0]

or for local interpretation

- ‘—;e—? J/m?® . deg.s. (8)
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With account for Umov equation [1]:after some trans-
formations we arrive at
ds, 1 . v
=7 div{vegn) ~qm F grade. 9
The energy dissipation within the considered irrever-
sible process is described by the second term in the
Lh.s. of equation (9)

Js de
T—2) =T0= —gm.v—
( 51:),-, T 7 L@Z

where 8 = (0s,/01),, is the rate of local entropy pro-
duction in the system due to energy dissipation in
irreversible processes.

Hence, following Onsager [2], thermodynamic
motive force of mass transfer X, at moulding may be
found from the expression

(10)

de
va'é"z""‘Qme (11)
as
de

Xy = —0— 12
w= o (12)

o oP,.C,)
X, = ep et ¥ 13
m= v (13)

The Onsager linear relation for a flow and thermo-
dynamic force requires the equality to hold
de

G = L. Xy = ~Lp.v—=

oz a4

where L, is the kinetic coefficient.
The dimensional analysis shows that L, .v may be
expressed as

(15)

So, a specific mass flux to the system with a finite
thickness equals

a. o(F,.C,)
== oz
From the Umov equation and equation (16) for zonal
calculation (at C,, a., C,,, = const) the differential mass-
transfer equation takes the form
o _ 2 C, 8*P,
ot ‘C,,0Z%
Bearing in mind that specific mechanic energy flux
transferred by diffusion during mass transfer is

, kg/m?s. (16)

an

de = Comlms w/mz’ (18)

the differential energy transfer equation may be ob-
tained for pressure shaping of flat articles from disperse
mass.

For the one-dimensional problem considered

de dle

5—; =, 6—25 (19)
For zonal calculations (C, = const)

oP, %P,

B:; = g, 'é? (20)

HMT Vol. 18, No. 7/8 - H

Thius; a complicated process of pressure shaping of
disperse mass involving changes in volume, mass con-
centration and energy in space and time (a nonlinear
problem) may be approximately described by a system
of relatively simple differential transfer equations (a
linear problem)

»_ C &P,

or ‘ec,. 077

6P, 3P @b
T ez

which show clear relationship between local changes
in mass density with the rate of pressure change at
these points in the direction of a moulding process

(22)

Experimental and analytical checks of validity of the
mathematical model may be performed if

{a) initial and boundary conditions for the process
are known; (b) the differential energy transfer equation
at the prescribed initial and boundary conditions is
solved; (c) there are experimental data on pressure
history over the surface and at the system centre;
(d) energophysical coefficients entering into solution of
the energy transfer equation are given.

A comparison of experimental and predicted curves
of tensometric diagram P, # f{(r) makes it possible to
judge how the model approaches the real process.

Initial conditions comprise physical and geometric
parameters of the system in its initial state (z = 0):
such as granulometric composition of powder; initial
density p,, kg/m?; energophysical parameters of the
system; its geometric dimensions, temperature con-
ditions.

To investigate general relationships of energy and
mass transfer use has been made of electrolytic titanic
powder PTM-I and metallurgic magnesite powder.

Geometric dimensions of a thermodynamic mass-
saturated system are 155 x 50 x 25mm.

Temperature conditions: at the initial moment t = 0
of moulding process and at any 7 constant temperature
of 293°K is assumed. Energy and physical parameters
of the system entering into differential transfer equa-
tions are determined using a semi-analytical method
which will be presented below.

Boundary conditions of packing process for disperse
materials that determine behaviour of specific energy
or potential (specific pressure) flux over the system
surface may be subdivided into three main groups.

1. Thefirstkind boundary conditions define behaviour
of a specific pressure over the pressed piece surface,
for example

(a) P, = &,t, where £, = 0P, /0t is the rate of specific
pressure growth over the surface, N/m?s; 1 is the time
of moulding, s.

At £, = const specific pressure growth is linear.

(b) P, = const. This first kind boundary condition
implies instantaneous pressure rise over the pressed
piece surface that may be provided when a moulding
process is performed using the explosion method.
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2. The second kind boundary conditions define be-
haviour of specific energy flux g, per energy-receiving
surface that shows an energy amount from a plunger
per pressed piece unit surface area (1m?) per unit time
(1s); J/m*s, W/m?. For instance,

(a) the condition g, = const implies constant energy
flux to the pressed piece surface within the process
under consideration;

(b) the condition ¢, = { .1 at {, = dq,/é1 = const

implies a linear energy flux change during moulding
process.
3. The third kind of boundary conditions imply mass
packing because of rational use of a conservative force
field acting on particles within the whole disperse
system volume,

Such boundary conditions hold primarily for pack-
ing by vibration, in cenirifuges, etc. Besides, more
complicated boundary conditions may hold which
imply the moulding process to run at various com-
bination of the first and second kind of boundary
conditions. For example:

(a) condition P, =¢,.1; P, = const, (P, =¢,.1))
implies the process to be conducted with linear initial
pressure growth over the pressed piece surface for time
interval of 1, followed by keeping the pressed piece at
final pressure P, ;

(b) condition g, = const; P, = const implies a con-
stant energy flux over a pressed piece surface with its
subsequent keeping at constant final pressure P, of
moulding;

{c) condition P, = const holds in case of mass
packing by pneumoramming, In this case the process
consists of a great number of “steps” (i} moulding at
P =const{i=1,23...x)etc

The boundary conditions of processes may be
analysed from the energy diagram that represents a
graphic interpretation of power changes such as work-
ing power (M,,), press idling power (M) and intake
power (M,,) for a moulding cycle.

M,, is the instantaneous power consumed by a press
during moulding, W;

M, 1s the instantaneous power consumed by a press
when developing a working pressure without power
supply for energy and mass transfer in the considered
system, W

M,, is the power consumed for moulding per unit
time, W,

My =gq..F,W 23)

F is the energy and mass-receiving surface area of a
thermodynamic system saturated with mass and energy,
m?.

For powder packing use has been made of PSU-500
press. Energy diagrams of the processes recorded by
means of oscillograph-700 are presented in Fig. 2(b).

Analysis of the diagrams shows that moulding has
proceeded with a linear growth of specific energy flux
g, = &,.1; (€, = 0g./07 = const), i.e. under the second
kind of boundary conditions.

Bearing in mind that differential potential conduc-
tivity equation (20) is derived with the assumption of

constant electrical conductivity A, and constant energy
capacity C, for the system under consideration
(a. = 4./C,) that is not so in reality. The initial and
boundary conditions will now be formulated for the
process considered with regard for necessity of zonal
calculations at 4,, C,, a, = const.

INITIAL CONDITIONS

The analysis reveals that for symmetric bilateral
moulding the curves of pressure distribution over the
cross-section of a flat pressed piece may be expressed
for the first approximation by the second-kind

parabola as
2

P(z0) = f,(2) = &+%APO. 24)

Here P{z,0} is the pressure at any point z over the
cross-section of a pressed piece at any moment of
moulding taken as a reference time {t = 0); R is the
calculated plate thickness, m; P, = P,,—P,, is the
pressure difference between the surface (P,,) and the
centre of the pressed piece (P,,) at the initial moment
of the considered region.

Boundary conditions for a solution of differential
equation (24) for zonal calculations may be formulated
as

qe=G,+5;.7. (25)

A solution of differential potential conductivity equa-

tion (24) for the given initial and boundary conditions
is of the form

Pz,7) = 11,,+AP,,[%+4 Y (~ 1 —yeos =
X exp(— n"vzzFo}]
4 e R?—-37? -
deo R — 1 n+1
. [ Fo-—x ; )

X €08 %f X exp(-—nznzFo)]

5‘; .R3 5 2 F 4
i [%FO Fo. EIF AT
z? z il i
R R 2 — 1 n+1
12R? * 360 ,,;1 (=1 n*nt

x cos%f:E X exp(—nznzFo)]. (26)

To compare experimental data with the predicted
values by formula (26) P, = f{(z, 1), tensometric dia-
grams of a moulding process were taken P, = ¢f1);
P =y(1).

Here P, and P, were recorded on oscillograms as
averaged values with respect to mass and energy-
receiving surfaces “external” and “central” (see Fig. 2).

Superposition of energy and tensometry diagrams
makes it possible to evaluate coefficients entering into
equation (4).

Mean values of specific energy capacity of the process
are found from the balance equation

Gom- F.1=(C)P P,V 27
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F1G. 2. Tensometry, energy and mass concentration diagrams of a packing
process of a disperse plate (a) Tensometry diagram P, = ¢(7); 1, mean
pressure P, over mass- and energy-surface of a disperse plate, N/m?;
2, mean pressure P. in a plane through the symmetry axis in the plate
centre (at distance B from the surface, N/m?); 3, pressure difference
AP = P,—P,, N/m2 (b) Energy diagram M = f(z); 4, working power,
M,, W; 5, idling power of power unit (a press), My, W; 6, intake power,
M;,, consumed by the thermodynamic system with mass transfer, W;
(c) Mass concentrationdiagram p = (z); 7, mean initial density of a disperse
plate, kg/m3; 8, mean density over the mass-receiving surface, p,, kg/m3;
9, mean density in the axial plane of the plate, p,, kg/m®; 10, density
difference between surface and centre of the plate, Ap, = p,—p,, kg/m?;
11, mean final density of intermediate products, p7, kg/m?>.

hence
qem-Ft & .77
C. 5" = =1 s 28
() P,V 2P,.R @8)
. (C)F. Pe—(C). P
(C)£E — ( )o Pe( )o (29)

Here gq,,, is the energy flux averaged within the con-
sideredinterval (“zone”) of the moulding process, J/m?s:

Gom = qb+qe
o 2

P, is the pressure averaged over the pressed piece cross-
section, N/m?; P,, = P,—%AP with a parabolic pressure
distribution; V is the volume of a thermodynamic
system “saturated” with mass and energy; C/». P, is
the compression energy per 1m?® of the considered
system, J/m3; (C,)% is the specific energy capacity of
the process averaged within the mean pressure range
from P2 up to P¢ in a pressed piece.

Mean values of energy conductivity (4,) are found
with the assumption that within individual regions (At)
moulding proceeds at g,,, = const so

AP, — Gem- R
2(Ae)m
ie.
em- R
where
AP, — APE-;AP,,.

Mean values of potential conductivity for zonal in-
tervals (A7) are determined from predicted values of
(Ae)m and (Co)p:

o
@en = Co

m?/s. (30)
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Since the present energodynamic model of moulding
implies clear interrelation between local changes in
density and pressures

ép C, 8P,
0t Coy 0Z

it seems useful to determine simultaneously specific
energy capacity C, and mean values C,, of specific
energy capacity with mass transfer for individual zones
of calculation, These values may be found from the
balance equation

Gom- F 1= (Con)2 . Apyy. V (31)

where Ap,, is the density increment of the volume-
averaged system for the considered period of moulding,
kg/m3.

Assuming for the first approximation a linear in-
crease of the density of the system with linear move-
ments of a movable plunger, we may obtain

F W,.t
=p,—Al = £ 32
Apm = po; Al = p, R (32)
hence
&1

Cem gpm ==t 33

(Com o W, 33

(c )Ape -~ Coép"Ape'”cgpy‘Apb (34)

T Bpe—Apy

Here W, is the velocity of the plunger (m/s).

Predicted values of energophysical coefficients for
the thermodynamic system under consideration are
furnished in Tables 1 and 2.

Pressure distribution curves P, = ¢(t) and P, = (1)
predicted from solution of equation (26} are presented
in the tensometric diagrams (Fig. 2a). The same figure

presents predicted densities of the pressed pieces over
their surfaces and at the centre (at bilateral moulding)
as p, = o(1); p. = f(1).

Analysis of the curves in Fig. 2 shows that experi-
mental and predicted curves P = f(r) over the surface
and in the centre of a pressed piece practically coincide.
This proves the validity of the proposed energodynamic
model of moulding.

CONCLUSION

A phenomenological model of energy and mass
transfer is proposed for pressure shaping of disperse
materials. The proposed model provides:

1. An approximate description of moulding;

2. Determination of optimum initial and boundary
conditions of moulding processes (fractional com-
position, type of moisture, humidity, properties of
press moulds and plungers, rate of specific pressure
growth over the pressed piece surface, an effect of
hold up time, behaviour of an energy flux, etc.) with
minimum experimental data;

3. Prediction of behaviour of mass concentration at
any point of a pressed piece at any moment of
moulding under different initial and boundary
conditions.

The proposed tensometry, energy and mass-concen-
tration diagrams make it possible to present simul-
taneously changes of parameters of the present process
in space and time.

REFERENCES
1. A.V.Luikov, Hear and Mass Transfer. Energiya, Moscow
1972).
2. A. V. Luikov and Yu. A, Mikhailov, Theory of Heat and
Mass Transfer. Gosenergoizdat, Moscow-Leningrad
(1963).

THEORIE PHENOMENOLOGIQUE DU TRANSFERT DE MASSE
ET D’ENERGIE—~MOULAGE SOUS PRESSION DES MATERIAUX DISPERSIFS

Résumé—L'article propose un modéle physico-mathématique de moulage qui permet de réduire un
probléme non-linéaire de transfert de masse et d'énergie avec déformation de volume en un probléme
linéaire de transfert de masse et d’énergie dans un systéme thermodynamique & volume constant.

PHANOMENOLOGISCHE THEORIE DES ENERGIE- UND
STOFFTRANSPORTS BEIM FORMPRESSEN DISPERSER MATERIALIEN

Zusammenfassung—In dem Aufsatz wird ein physikalischmathematisches Modell fiir die Formgebung

vorgeschlagen, welches das nichtlineare Problem des Wirme- und Stoffiibergangs mit Volumenédnderung

auf ein lineares Problem des Wirme- und Stoffiibergangs an ein thermodynamisches System konstanten
Volumens reduziert.

GEHOMEHOJIOT'MYECKAS TEOPUS DHEPI'O — Y1 MACCOIIEPEHOCA
ITPU OBPABOTKE JAMCIIEPCHBLIX MATEPHAJIOB JJABJIEHUEM

Amorams — B paore npeanoxena ©H3MKO-MaTEMaTHYECKAsi MOIEIbL NPOHECCa TIPECCOBaHHS,

NPUBOAKILAN HEMWHERHYIO 3a0a4y 3HEPro- H Maccomeperoca Iiph gedopMauny o6neMa K MHHEHROH

3afave NEepPeHOCa JHEPrHd M MAacChl BEHIECTBA B TEPMOAHHAMHYECKYI0 CHCTEMY C MOCTOSHHBIM
obBeMOM.



