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Abstract-In the paper a physico-mathematical model of moulding is proposed that reduces a nonlinear 
problem of energy and mass transfer with volume deformation to a linear problem of energy and mass 

transfer to a thermodynamic system with a constant volume. 

NOMENCLATURE 

mass-transfer potential [J/kg’]; 
absolute temperature; 
Cartesian coordinates [ml; 
entropy of unit mass [J/kg”K]; 
entropy concentration [J/m”“K]; 
= l/p, specific volume [m3,kg]; V, 

P,~~,AP~, density, mean density, in~ement of 
mean density, respectively [kg/m3]; 

P, pij, pressure, normal and tangential stresses 
(i,j = 1,2,3), respectively; 

P, , Py , P, , physicfil scalars of normal stresses 
along axes x, y, 2, respectively; 

P, , PC, pressure over the surface and at the centre 
of the disperse plate; 

P,,?P,>P,,Z pressure over the surface and at the 
centre of disperse plate at the beginning 
and end of the time interval, respectively; 

P,i, PO, pressure at the ith period of moulding and 
pressure increment at the beginning of 
region As; 

Pi, Pz, mean pressure in the beginning and at the 
end of time interval (“zone”) p/mz]; 

e, ~n~ntration of compression energy per 
per unit volume [J/m31 ; 

F, energy and mass-receiving surface [m2]; 
C,, (C,),, CC,),‘-, CC,)& energy capacity 

coefficient and its mean values, respectively : 
mean, mean within pressure range between 
0 and P,,,; mean within pressure range 
between p”, and Pz [.T/m”(N/m*)]; 

C,, , (C&?“, fC,)& specific energy coefficient 
and its mean values: respectively: within 
density increment range between 0 and 
Ap,,, , and between Apb and Ap, 

r J 1 

I. m3(kg/m3) ’ 1 

q specific mass flow [kg/m’s]; 

z’4e0 t 9.m 2 specific flux of mechanical energy and 
its values, respectively at the initial moment 

of interval Ar(“O”) and mean value within 
this interval (m) 

rwi 

5 P’ 

r rl’ 

R 
Fo, 
9, 

X mt 

N/m2 
rate of changing pressure ~ ; 1 1 S 

rate of changing specific energy flux 

W 

[ 1 -; 
m2s 

predicted thickness of disperse plate [m]; 
Fourier number; 
entropy production per unit volume 

r3. 
lm3s_l’ 

thermodynamic motive force of mass 
transfer; 

aer a,, potential conductivity and its mean value 
in predicted “zone” [m’/s]; 

4 energy conductivity [W/m2 (N/m2)]; 

Mw 3 Mn > Midlv working power, intake power and 
idling power of power unit, respectively [W]. 

RECENT WORKS of Dutch and Belgian physicists, 
mainly of de Groot, and of Soviet scientists under 
general direction of Academician A. V. Luikov have 
allowed a new powerful method to be developed for 
phenomenological investigation of transfer processes 
called thermodynamics of irreversible processes. 

The presented paper is the first attempt to treat 
pressure shaping of disperse materials from the 
phenomenological point of view. 

THE MAIN POINTS OF THE FORMULATED MODEL 

A disperse material in a volume restricted by the 
required dimensions of a manufactured product and 
the press mould walls is assumed as a thermodynamic 
system. The disperse material is a continuous system 
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with parameters such as density, pressure, temperature 
afways variable in space when interacting with the 
surrounding medium. 

The objective ofmoulding is to increase mass content 
of the thermodynamic system by addition of mass 
(homogeneous or inhomogeneous) from the surround- 
ing medium. 

“Excess” mass of the material under plungers, the 
plungers themselves with a drive are the surrounding 
medium, a kind of “mass-energostat”, for the present 
system to exchange mass and energy with. The “mass- 
energostat” is assumed to possess a sufficient amount 
of mass and energy for the present technological 
process to run. During the whole moulding cycle mass 
and energy concentrations in it are not a function of 
the spatial coordinates. 

External mass and energy transfer between the 
the~ody~~ic system surface and the surrounding 
medium occurs due to replacement of an elementary 
surface layer ofthe system with a small energy potential 
by the mass from the “mass-energostat” with a higher 
margin of the same potential in the direction of the 
external force. 

inside the system considered processes of successive 
movement of elementary layers of mass towards the 
system axis, transfer of moments, kinetic energy at 
collisions of discretemass particles proceed in a random 
diffusive way, involve energy dissipation for internal 
friction forces and are damping. This is the way how 
diffusive mass and energy fluxes arise. Thus, a complex 
process of mass packing with deformation of the 
disperse material volume in the press mould is rep 
resented by a simplified physical model of mass and 
energy transfer in a thermodynamic system with a 
constant volume. 

A disperse material is placed within a field of con- 
servative earth gravitation forces. It is shown that a 
natural process of consolidation (packing the material 
due to these body forces) proceeds in relatively thin 
plates for years. Therefore, the gravity effect on dis- 
tribution of the disperse material density may be 
neglected, i.e. 

PO z f(Z). 

A uniform initial distribution of the material over 
two other axes in the plate is also assumed 

PO f f(X, Y, Z, 0). 

A MATHEMATICAL MODEL OF THE PROCESS 

A moulding process will now be treated that proceeds 
at bilateral symmetrical mass-energy flux supply to a 
disperse plate of an infinite length and width (Fig. 1). 

Mass and energy transfer into the system is ac- 
companied by disturbance of its mass-energy equilib- 
rium with the surrounding medium. All changes that 
take place in the system during an elementary 
irreversible process are included in the second principle 
of thermodynamics by the entropy production term 
which at initial assumptions of the process model is 
of the form 

TdS, = pdp. (1) 

2 

FIG. 1. Geometric interpretation of the physical model of 
mass and energy transfer for pressure shaping of an infinite 
disperse plate. G1 = G2 are forces applied to plungers (2) 
at symmetric bilateral moulding; 1, thermodynamic system 
with prescribed volume V = F. ZBbeingsaturated with mass 
and energy; F, mass- and energy-receiving surface area of 
the system, m’. 28, disperse plate thickness, m; 2, “mass- 
energostat”, a source of mass and energy at moulding 
(plungers and excessive mass saturating the thermodynamic 

system); x, y, z, Cartesian coordinates. 

The Gibbs-Duhem equation 

d,u = sdT+udp, J/kg 

gives the m~s-transfer potenti~ ~1, where pressure, 
density, temperature, concentration and the other 
scalar quantities are physical scalars. In this case, for 
liquids in equilibrium with the surrounding medium, 
pressure P represents compression energy storage per 
unit volume, N/m2, N. m/m3, J/ms, i.e. P = e. 

A stressed state of disperse materials is characterized 
by the antisymmetric tensor of the second order 

P”= _Fi: $ F,i} (3) 

where P,, = -P,.n; Pzz = Py.n; P3, = Pz.n. 
The total compression energy storage in the system 

under stress is not included by any of the scalar 
quantities P* (i = X, Y, Z). 

Therefore, the specific energy consumed by the mass 
per unit volume of this system may be expressed as 

e = P,.C, (4) 

ae 
where C, = ap ; for liquids g = 1; e = P. 

z z 

So, at dT ~0 in accordance with equation (2) we 
have 

dp==ude (5) 

hence 

,u = ve (6) 
Tds, = uedp (7) 

or for local interpretation 

iis, 
-= -+e$, J/m3.deg.s. 
dr (8) 
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With account for Umov equation [l] .&er some trans- TIms, a complicated process of pressure shaping of 
formations we arrive at disperse mass involving changes in volume, mass con- 

2 = + div(veg,) -q,,, f grad e. 
~ntration and energy in space and time (a nonlinear 

(9) probiem) may be approximately described by a system 
of relatively simple differential transfer equations (a 

The energy dissipation within the considered irrever- linear problem) 
sible process is described by the second term in the 
1.h.s. of equation (9) 

ap c, aZpz 
z==eC,,a22 

ap, a’p, (21) 

-=ae= aT 

where B = (&,j&), is the rate of local entropy pro- which show clear relationship between local changes 
duction in the system due to energy dissipation in in mass density with the rate of pressure change at 
irreversible processes. these points in the direction of a moulding process 

Hence, following Gnsager [2], thermodynamic 
motive force of mass transfer X,,, at moulding may be ap c, ap, -=--. 

a7 c, a7 
(22) 

found from the expression 
Experimental and analytical checks of validity of the 

mathematics model may be performed if 

as (a) initial and boundary conditions for the process 

x, 2= -“$ (12) 
are known; (b) the differential energy transfer equation 
at the prescribed initial and boundary conditions is 

or solved; (c) there are experimental data on pressure 

X, = _u%$. (13) 
history over the surface and at the system centre; 
(d) energophysical coefficients entering into solution of 

The Onsager linear relation for a flow and thermo- 
the energy transfer equation are given. 

dynamic force requires the equality to hold 
A compa~son of ex~r~ental and predicted curves 

qm = L,.X, = -L,,~~ 

of tensometric diagram P, # f(z) makes it possibie to 

04) 
judge how the model approaches the real process. 

Initial conditions comprise physical and geometric 

where L, is the kinetic coefficient. 
parameters of the system in its initial state (r = 0): 

The dimensional analysis shows that I., . t’ may be 
such as granulometric composition of powder; initial 

expressed as 
density po, kg/m3; energophysical parameters of the 

L,.U +* (15) 
system; its geometric dimensions, temperature con- 
ditions. em 

So, a specific mass flux to the system with a finite 
To investigate general relationships of energy and 

thickness equals 
mass transfer use has been made of electrolytic titanic 

4 wz a G-1 
powder PTM-I and metallurgic magnesite powder. 

qm = --*-) 
Geometric dimensions of a thermodynamic mass- 

c, az 
kg/m2 s. (16) 

saturated system are 155 x 50 x 25 mm. 

From the Umov equation and equation (16) for zonal Temperature conditions: at the initial moment 7 = 0 

calculation (at C,, a,, C, = const) the difjkrential mass- 
of moulding process and at any 7 constant temperature 

transfer equation takes the form of 293°K is assumed. Energy and physicai parameters 
of the system entering into differenti~ transfer equa- 

(17) 
tions are determined using a semi-analytical method 
which will be presented below. 

Bearing in mind that specific mechanic energy flux Boundary conditions of packing process for disperse 

transferred by diffusion during mass transfer is materials that determine behaviour of specific energy 

q6’ = c,, qnly W/m’, 
or potential (specific pressure) flux over the system 

(18) surface may be subdivided into three main groups. 

the differential energy transfer equation may be ob- 1. The first kind boundary conditions define behaviour 

tained for pressure shaping of fiat articles from disperse of a specific pressure over the pressed piece surface, 

mass. for example 

For the one-dimensional problem considered (a) P, = 5,7, where 5, = aP,,& is the rate of specific 

ae aze 
pressure growth over the surface, N/m’s; r is the time 

-=aea22. (19) 
of moulding, s. 

az At 5, = const specific pressure growth is linear. 

For zonal calculations (C, = const) 
(b) P, = const. This first kind boundary condition 

ap --?=a ax. 
implies instantaneous pressure rise over the pressed 
piece surface that may be provided when a moulding 

a7 e dZ2 process is performed using the explosion method. 
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2. The second kind boundary conditions define be- 
haviour of specific energy flux qe per energy-receiving 
surface that shows an energy amount from a plunger 
per pressed piece unit surface area (lm’) per unit time 
(1 s); J/m2 s, W/m”. For instance, 

(a) the condition q, = const implies constant energy 
flux to the pressed piece surface within the process 
under consideration; 

(b) the condition qe = &. z at & = 8(1#7 = const 
implies a linear energy flux change during moutding 
process. 
3. The third kind of boundary conditions imply mass 
packing because of rational use of a conservative force 
field acting on particles within the whole disperse 
system volume. 

Such boundary conditions hold primarily for pack- 
ing by vibration, in centriFuges, etc. Besides, more 
complicated boundary conditions may hold which 
imply the moulding process to run at various com- 
bination of the first and second kind of boundary 
conditions. For example: 

(a) condition P, = 5,. 7; P,. = const, (P,. = 5,. 7,) 
implies the process to be conducted with linear initial 
pressure growth over the pressed piece surface for time 
interval of 7, followed by keeping the pressed piece at 
final pressure P,, ; 

(b) condition qe = const; Ps, = const implies a con- 
stant energy flux over a pressed piece surface with its 
subsequent keeping at constant final pressure P,, of 
moulding; 

(c) condition Psi = const holds in case of mass 
packing by pneumoramming. In this case the process 
consists of a great number of “steps” (i) moulding at 
P, = const (i = 1,2,3 .,. co), etc. 

The boundary conditions of processes may be 
analysed from the energy diagram that represents a 
graphic interpretation of power changes such as work- 
ing power (A&,), press idling power (&,,) and intake 
power (Mi,) for a moulding cycle. 

I%&,, is the instantaneous power consumed by a press 
during moulding, W; 

it&,, is the instant~eous power consumed by a press 
when developing a working pressure without power 
supply for energy and mass transfer in the considered 
system, W: 

Mi, is the power consumed for moulding per unit 
time, W; 

h&=qe.F,W. (231 

F is the energy and m~s-receiving surface area of a 
thermodynamic system saturated with mass and energy, 
m*. 

For powder packing use has been made of PSU-500 
press. Energy diagrams of the processes recorded by 
means of oscillograph-700 are presented in Fig. 2(b). 

Analysis of the diagrams shows that moulding has 
proceeded with a linear growth of specific energy flux 
qe = 5,. t; (C, = i3qi,/az = const), i.e. under the second 
kind of boundary conditions. 

Bearing in mind that differential potential conduc- 
tivity equation (20) is derived with the assumption of 

constant electrical conductivity I, and constant energy 
capacity C, for the system under consideration 
(a, = 1,/C,) that is not so in reality. The initial and 
boundary conditions will now be formulated for the 
process considered with regard for necessity of zonal 
calculations at &, C,, u, = const. 

tNITiAL CONDITIONS 

The analysis reveals that for symmetric bilateral 
moulding the curves of pressure distribution over the 
cross-section of a Aat pressed piece may be expressed 
for the first approximation by the second-kind 
parabola as 

P&,0) = f*(Z) z P,,+;APO. (24) 

Here P&,0) is the pressure at any point z over the 
cross-section of a pressed piece at any moment of 
moulding taken as a reference time (7 = 0); R is the 
calculated plate thickness, m; P,, = P,,-PC0 is the 
pressure difference between the surface (P,,) and the 
centre of the pressed piece (PC,) at the initial moment 
of the considered region. 

Boundary conditions for a solution of differential 
equation (24) for zonal calc~ations may be formulated 
as 

4e = 40+5q.7. (25) 

A solution ofdifferential potential conductivity equa- 
tion (24) for the given initial and boundary conditions 
is of the form 

P(z,7)=P,+AP, f+4 t (-l)“&cosF 
II=1 

x exp( - n2n2Fo) 
1 

x cos y x exp( -n2rr2Fo) 1 . (26) 
To compare experimental data with the predicted 

values by formula (26) P, = f(z, t). tensomet~c dia- 
grams of a moulding process were taken P, = cp(zf; 

P, = 4w. 
Here P, and PC were recorded on oscillograms as 

averaged values with respect to mass and energy- 
receiving surfaces “external” and “central” (see Fig. 2). 

Superposition of energy and tensometry diagrams 
makes it possible to evaluate coeficients entering into 
equation (4). 

Mean values of specific energy capacity of the process 
are found from the balance equation 

qem.F.7 = (C,,B_.P,. I/ (2-O 
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FIG. 2. Tensometry,energy and mass concentration diagrams of a packing 
process of a disperse plate (a) Tensometry diagram P, = q(z); 1, mean 
pressure P, over mass- and energy-surface of a disperse plate, N/m’; 
2, mean pressure P, in a plane through the symmetry axis in the plate 
centre (at distance B from the surface, N/m’); 3, pressure difference 
AP = P,- P,, N/m*. (b) Energy diagram M = f(z); 4, working power, 
M,, W; 5, idling power of power unit (a press), Mid!, W; 6, intake power, 
Mi,, consumed by the thermodynamic system with mass transfer, W; 
(c)Mass concentration diagram p = $(T); 7, mean initial density of a disperse 
plate, kg/m3; 8, mean density over the mass-receiving surface, p.. kg/m3; 
9, mean density in the axial plane of the plate, pc. kg/m3; 10, density 
difference between surface and centre of the plate, Ap. = ps-pr, kg/m3; 

11, mean final density of intermediate products, p:, kg/m3. 

hence 

CC,),‘- = cg = g$ (28) 

(c)p; = (c,);:P;-(c,:.P; 
K Pfi 

(29) 

Here qm is the energy flux averaged within the con- 
sideredinterval(“zone”)ofthemoulding process, J/m’s: 

qb+qe 
4m=- 

2 

P,,, is the pressure averaged over the pressed piece cross- 
section, N/m’ ; Pm = P, -ZAP with a parabolic pressure 
distribution; V is the volume of a thermodynamic 
system “saturated” with mass and energy; C,‘-.P, is 

the compression energy per lm3 of the considered 
system, J/m”; (C,)s is the specific energy capacity of 
the process averaged within the mean pressure range 
from e up to Pz in a pressed piece. 

Mean values of energy conductivity (d,) are found 

with the assumption that within individual regions (AZ) 
moulding proceeds at qe,,, = const so 

@,=q,.R 
w,), 

i.e. 

mn = g 
m 

where 
AP, + APb 

AP, = p. 
2 

Mean values of potential conductivity for zonal in- 
tervals (A7) are determined from predicted values of 

(U, and (C,), : 

&hn 
be), = 0,’ m’/s. (30) 
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Since the present energodynamic model of moulding 
implies clear inte~elation between local changes in 
density and pressures 

aP c aP _=e--i 
at cm az 

it seems useful to determine s~ultaneously specific 
energy capacity C, and mean values C,, of specific 
energy capacity with mass transfer for individual zones 
of calculation. These values may be found from the 
balance equation 

qem. F. r = (C,,,,)~~ . Ap, . l’ (31) 

where Ap,,, is the density increment of the volume- 
averaged system for the considered period of moulding, 
kg/m3. 

Assuming for the first approximation a linear in- 
crease of the density of the system with linear move- 
ments of a movable plunger, we may obtain 

APT 
W,.T 

=p,dAl=/l.--- 
R 

hence 

(331 

(~~*)~ = 
+. Ap, - Ctpb. Apb 

Ape--AP, ’ 
(34) 

Here We is the velocity of the plunger (m/s). 
Predicted values of energophysical coefficients for 

the the~odyn~ic system under consideration are 
furnished in Tables 1 and 2. 

Pressure distribution curves P, = c&c) and P, = $42) 
predicted from solution of equation (26) are presented 

in the tensometric diagrams (Fig. 2a). The same figure 

presents predicted densities of the pressed pieces over 
their surfaces and at the centre (at bilateral moulding) 

as pS = V(Z); pc = _fW 
Analysis of the curves in Fig. 2 shows that experi- 

mental and predicted curves P = f(r) over the surface 
and in the centre of a pressed piece practically coincide. 
This proves thevalidity of the proposed energodyn~ic 
model of moulding. 

CONCLUSION 

A phenom~nological model of energy and mass 
transfer is proposed for pressure shaping of disperse 
materials. The proposed model provides: 
1. An approximate description of moulding; 
2. ~te~ination of optima initial and boundary 

conditions of moulding processes (fractional com- 
position, type of moisture, humidity, properties of 
press moulds and plungers, rate of specific pressure 
growth over the pressed piece surface, an effect of 
hold up time, behaviour of an energy flux, etc.) with 
minimum experimental data; 

3. Prediction of behaviour of mass concentration at 
any point of a pressed piece at any moment of 
moulding under different initial and boundary 
conditions. 

The proposed tensometry, energy and mass-concen- 
tration diagrams make it possible to present simul- 
taneously changes of parameters of the present process 
in space and time. 
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THEORIE P~~NOMENOLOGIQU~ DU TRANSFERT DE MASSE 
ET ~~~RG~E-MOULAGE SOUS PRESSION DES MA~R~AUX DISPERSIFS 

R&sum&--L’article propose un modele physico-mathirmatique de moulage qui permet de r&tire un 
probl&me non-lit&ire de transfert de masse et d%nergie avec deformation de volume en un probl&me 

Ii&ire de transfert de masse et d’energie darts un systeme the~od~amique a volme constant. 

PHANQMENOLOGISCHE THEORIE DES ENERGIE- UND 
STOF~RANSFORTS REIM FORMPRESSEN DISPERSER MATERIALIEN 

Zusammenfassung--In dem Aufsatz wird ein physikalischmathematisches Model1 fur die Formgebung 
vorgeschlagen, welches das nichtlineare Problem des Wiirme- und Stoffiibergangs mit Volumeniinderung 
auf ein hneares Problem des W&me- und Stoff~~rgan~ an ein thermodynam~sches System konstanten 

Volumens reduziert. 

~EHOMEHOJIOI-HYECKAJI TEOPHS 3HEPF0 - H MACCOI-IEPEHOCA 
IIPM OEPA6OTKE ~~C~EPCHbIX MATEP~~OB ~AB~~H~EM 

Amroram~rr - B pa6ore npe~noxcena ~u3HKo-MaTeMatHrecKaa Monenb npouecca npecconaaes, 
npaaofimnarr ifenune&ryro 3ana9y 3nepro- n Macconepeaoca npu ne@op~ausri o6%eMa K nemtiaoft 
sanase nepeHoca sseprnii R Maccbf Bewecm3a B TepMo~~HaM~~ecKy~ cmxeMy c nocTomsfbsM 

06W!MOM. 


